2,638 research outputs found

    Time-Contrastive Learning Based Deep Bottleneck Features for Text-Dependent Speaker Verification

    Get PDF
    There are a number of studies about extraction of bottleneck (BN) features from deep neural networks (DNNs)trained to discriminate speakers, pass-phrases and triphone states for improving the performance of text-dependent speaker verification (TD-SV). However, a moderate success has been achieved. A recent study [1] presented a time contrastive learning (TCL) concept to explore the non-stationarity of brain signals for classification of brain states. Speech signals have similar non-stationarity property, and TCL further has the advantage of having no need for labeled data. We therefore present a TCL based BN feature extraction method. The method uniformly partitions each speech utterance in a training dataset into a predefined number of multi-frame segments. Each segment in an utterance corresponds to one class, and class labels are shared across utterances. DNNs are then trained to discriminate all speech frames among the classes to exploit the temporal structure of speech. In addition, we propose a segment-based unsupervised clustering algorithm to re-assign class labels to the segments. TD-SV experiments were conducted on the RedDots challenge database. The TCL-DNNs were trained using speech data of fixed pass-phrases that were excluded from the TD-SV evaluation set, so the learned features can be considered phrase-independent. We compare the performance of the proposed TCL bottleneck (BN) feature with those of short-time cepstral features and BN features extracted from DNNs discriminating speakers, pass-phrases, speaker+pass-phrase, as well as monophones whose labels and boundaries are generated by three different automatic speech recognition (ASR) systems. Experimental results show that the proposed TCL-BN outperforms cepstral features and speaker+pass-phrase discriminant BN features, and its performance is on par with those of ASR derived BN features. Moreover,....Comment: Copyright (c) 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Vocal Tract Length Perturbation for Text-Dependent Speaker Verification with Autoregressive Prediction Coding

    Full text link
    In this letter, we propose a vocal tract length (VTL) perturbation method for text-dependent speaker verification (TD-SV), in which a set of TD-SV systems are trained, one for each VTL factor, and score-level fusion is applied to make a final decision. Next, we explore the bottleneck (BN) feature extracted by training deep neural networks with a self-supervised objective, autoregressive predictive coding (APC), for TD-SV and compare it with the well-studied speaker-discriminant BN feature. The proposed VTL method is then applied to APC and speaker-discriminant BN features. In the end, we combine the VTL perturbation systems trained on MFCC and the two BN features in the score domain. Experiments are performed on the RedDots challenge 2016 database of TD-SV using short utterances with Gaussian mixture model-universal background model and i-vector techniques. Results show the proposed methods significantly outperform the baselines.Comment: Copyright (c) 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Identifying Improved Sites for Heterologous Gene Integration Using ATAC-seq

    Get PDF
    Constructing efficient cellular factories often requires integration of heterologous pathways for synthesis of novel compounds and improved cellular productivity. Few genomic sites are routinely used, however, for efficient integration and expression of heterologous genes, especially in nonmodel hosts. Here, a data-guided framework for informing suitable integration sites for heterologous genes based on ATAC-seq was developed in the nonmodel yeast Komagataella phaffii. Single-copy GFP constructs were integrated using CRISPR/Cas9 into 38 intergenic regions (IGRs) to evaluate the effects of IGR size, intensity of ATAC-seq peaks, and orientation and expression of adjacent genes. Only the intensity of accessibility peaks was observed to have a significant effect, with higher expression observed from IGRs with low- to moderate-intensity peaks than from high-intensity peaks. This effect diminished for tandem, multicopy integrations, suggesting that the additional copies of exogenous sequence buffered the transcriptional unit of the transgene against effects from endogenous sequence context. The approach developed from these results should provide a basis for nominating suitable IGRs in other eukaryotic hosts from an annotated genome and ATAC-seq data

    Agave: A promising feedstock for biofuels in the water-energy-food-environment (WEFE) nexus

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordThe aim of this study was to conduct the first comprehensive life cycle assessment and economic analysis on ethanol produced from agave. Compositional and field data from a field experiment in Queensland, Australia was used. Our study shows that ethanol yields from agave (7414 L/ha/year) are comparable to Brazilian sugarcane (9900/L/ha/year) and higher than US corn ethanol (3800/L/ha/year). Furthermore, agave outperforms current first generation biofuel crops in water-related impacts, including Freshwater Eutrophication (96% lower than corn and 88% lower than sugarcane), Marine Ecotoxicity (59% lower than corn and 53% lower than sugarcane) and Water Consumption (46% lower than corn and 69% lower than sugarcane). The life cycle fossil energy use (Fossil Resource Scarcity) for agave is 58% lower than corn and 6% higher than sugarcane. The Global Warming impact for agave is also 62% and 30% lower than that of corn and sugarcane, respectively. Although its Land Use impact, measured by land occupied per unit ethanol output, is 98% higher than corn and 2% higher than sugarcane, agave can be grown on arid land that is not suitable for food crops. The economic analysis suggests that first generation ethanol production from agave is not commercially viable without government support. Overall, the results show that agave is promising for biofuel production in the water-energy-food-environment context.Engineering and Physical Sciences Research Council (EPSRC)Natural Environment Research Council (NERC

    Easy on that trigger dad: a study of long term family photo retrieval

    Get PDF
    We examine the effects of new technologies for digital photography on people's longer term storage and access to collections of personal photos. We report an empirical study of parents' ability to retrieve photos related to salient family events from more than a year ago. Performance was relatively poor with people failing to find almost 40% of pictures. We analyze participants' organizational and access strategies to identify reasons for this poor performance. Possible reasons for retrieval failure include: storing too many pictures, rudimentary organization, use of multiple storage systems, failure to maintain collections and participants' false beliefs about their ability to access photos. We conclude by exploring the technical and theoretical implications of these findings

    How selection and weighting of astrometric observations influence the impact probability. Asteroid (99942) Apophis case

    Full text link
    The aim is to show that in case of low probability of asteroid collision with Earth, the appropriate selection and weighing of the data are crucial for the impact investigation, and to analyze the impact possibilities using extensive numerical simulations. By means of the Monte Carlo special method a large number of ``clone'' orbits have been generated. A full range of orbital elements in the 6-dimensional parameter space, e.g. in the entire confidence region allowed by the observational material has been examined. On the basis of 1000 astrometric observations of (99942) Apophis, the best solution for the geocentric encounter distance of 6.065\pm 0.081 R_{Earth} were derived for the close encounter with the Earth on April 13, 2029. The present uncertainties allow for the special configurations (``keyholes'') during these encounter which may lead to the very close encounters in the future approaches of Apophis. Two groups of keyholes are connected with the close encounter with the Earth in 2036 (within the minimal distance of 5.7736-5.7763 R_{Earth} on April 13, 2029) and 2037 (within the minimal distance of 6.3359-6.3488 R_{Earth}). The nominal orbits for our most accurate models run almost exactly in the middle between these two impact keyhole groups. A very small keyhole for the impact in 2076 has been found between these groups at the minimal distance of 5.97347 R_{Earth} (close to the nominal orbit)

    Exogenous WNT5A and WNT11 proteins rescue CITED2 dysfunction in mouse embryonic stem cells and zebrafish morphants

    Get PDF
    Mutations and inadequate methylation profiles of CITED2 are associated with human congenital heart disease (CHD). In mouse, Cited2 is necessary for embryogenesis, particularly for heart development, and its depletion in embryonic stem cells (ESC) impairs cardiac differentiation. We have now determined that Cited2 depletion in ESC affects the expression of transcription factors and cardiopoietic genes involved in early mesoderm and cardiac specification. Interestingly, the supplementation of the secretome prepared from ESC overexpressing CITED2, during the onset of differentiation, rescued the cardiogenic defects of Cited2-depleted ESC. In addition, we demonstrate that the proteins WNT5A and WNT11 held the potential for rescue. We also validated the zebrafish as a model to investigate cited2 function during development. Indeed, the microinjection of morpholinos targeting cited2 transcripts caused developmental defects recapitulating those of mice knockout models, including the increased propensity for cardiac defects and severe death rate. Importantly, the co-injection of anti-cited2 morpholinos with either CITED2 or WNT5A and WNT11 recombinant proteins corrected the developmental defects of Cited2-morphants. This study argues that defects caused by the dysfunction of Cited2 at early stages of development, including heart anomalies, may be remediable by supplementation of exogenous molecules, offering the opportunity to develop novel therapeutic strategies aiming to prevent CHD.AgĆŖncia financiadora: FundaĆ§Ć£o para a CiĆŖncia e a Tecnologia (FCT) ComissĆ£o de CoordenaĆ§Ć£o e Desenvolvimento Regional do Algarve (CCDR Algarve) ALG-01-0145-FEDER-28044; DFG 568/17-2 Algarve Biomedical Center (ABC) Municipio de LoulĆ©info:eu-repo/semantics/publishedVersio
    • ā€¦
    corecore